extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4)⋊1C22 = C24.103D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):1C2^2 | 128,1734 |
(C2×C4○D4)⋊2C22 = C24.177D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):2C2^2 | 128,1735 |
(C2×C4○D4)⋊3C22 = C4○D4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):3C2^2 | 128,1740 |
(C2×C4○D4)⋊4C22 = (C2×Q8)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):4C2^2 | 128,1742 |
(C2×C4○D4)⋊5C22 = (C2×D4)⋊21D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):5C2^2 | 128,1744 |
(C2×C4○D4)⋊6C22 = C42.313C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4):6C2^2 | 128,1750 |
(C2×C4○D4)⋊7C22 = M4(2)⋊C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):7C2^2 | 128,1751 |
(C2×C4○D4)⋊8C22 = C24.121D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):8C2^2 | 128,1920 |
(C2×C4○D4)⋊9C22 = C24.127D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):9C2^2 | 128,1926 |
(C2×C4○D4)⋊10C22 = C4.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):10C2^2 | 128,1930 |
(C2×C4○D4)⋊11C22 = D8⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):11C2^2 | 128,1996 |
(C2×C4○D4)⋊12C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):12C2^2 | 128,1997 |
(C2×C4○D4)⋊13C22 = D8⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):13C2^2 | 128,1999 |
(C2×C4○D4)⋊14C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):14C2^2 | 128,2000 |
(C2×C4○D4)⋊15C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):15C2^2 | 128,2004 |
(C2×C4○D4)⋊16C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):16C2^2 | 128,2006 |
(C2×C4○D4)⋊17C22 = D8⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):17C2^2 | 128,2012 |
(C2×C4○D4)⋊18C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):18C2^2 | 128,2014 |
(C2×C4○D4)⋊19C22 = C22.48C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):19C2^2 | 128,2191 |
(C2×C4○D4)⋊20C22 = C22.49C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):20C2^2 | 128,2192 |
(C2×C4○D4)⋊21C22 = C22.70C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):21C2^2 | 128,2213 |
(C2×C4○D4)⋊22C22 = C22.73C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):22C2^2 | 128,2216 |
(C2×C4○D4)⋊23C22 = C22.75C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):23C2^2 | 128,2218 |
(C2×C4○D4)⋊24C22 = C22.76C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):24C2^2 | 128,2219 |
(C2×C4○D4)⋊25C22 = C22.77C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):25C2^2 | 128,2220 |
(C2×C4○D4)⋊26C22 = C22.78C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):26C2^2 | 128,2221 |
(C2×C4○D4)⋊27C22 = C22.79C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):27C2^2 | 128,2222 |
(C2×C4○D4)⋊28C22 = C22.83C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):28C2^2 | 128,2226 |
(C2×C4○D4)⋊29C22 = C4⋊2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):29C2^2 | 128,2228 |
(C2×C4○D4)⋊30C22 = C22.87C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):30C2^2 | 128,2230 |
(C2×C4○D4)⋊31C22 = C22.89C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):31C2^2 | 128,2232 |
(C2×C4○D4)⋊32C22 = C22.94C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):32C2^2 | 128,2237 |
(C2×C4○D4)⋊33C22 = C22.95C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):33C2^2 | 128,2238 |
(C2×C4○D4)⋊34C22 = C22.97C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):34C2^2 | 128,2240 |
(C2×C4○D4)⋊35C22 = C22.102C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):35C2^2 | 128,2245 |
(C2×C4○D4)⋊36C22 = C22.103C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):36C2^2 | 128,2246 |
(C2×C4○D4)⋊37C22 = C22.108C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):37C2^2 | 128,2251 |
(C2×C4○D4)⋊38C22 = C23.144C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):38C2^2 | 128,2252 |
(C2×C4○D4)⋊39C22 = C22.118C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):39C2^2 | 128,2261 |
(C2×C4○D4)⋊40C22 = C42⋊C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):40C2^2 | 128,2264 |
(C2×C4○D4)⋊41C22 = C22.122C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):41C2^2 | 128,2265 |
(C2×C4○D4)⋊42C22 = C22.123C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):42C2^2 | 128,2266 |
(C2×C4○D4)⋊43C22 = C22.124C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):43C2^2 | 128,2267 |
(C2×C4○D4)⋊44C22 = C22.125C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):44C2^2 | 128,2268 |
(C2×C4○D4)⋊45C22 = C22.126C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):45C2^2 | 128,2269 |
(C2×C4○D4)⋊46C22 = C22.128C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):46C2^2 | 128,2271 |
(C2×C4○D4)⋊47C22 = C22.130C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):47C2^2 | 128,2273 |
(C2×C4○D4)⋊48C22 = C22.131C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):48C2^2 | 128,2274 |
(C2×C4○D4)⋊49C22 = C22.132C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):49C2^2 | 128,2275 |
(C2×C4○D4)⋊50C22 = C22.135C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):50C2^2 | 128,2278 |
(C2×C4○D4)⋊51C22 = C22.138C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):51C2^2 | 128,2281 |
(C2×C4○D4)⋊52C22 = C22.140C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):52C2^2 | 128,2283 |
(C2×C4○D4)⋊53C22 = C22.147C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):53C2^2 | 128,2290 |
(C2×C4○D4)⋊54C22 = C22.149C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):54C2^2 | 128,2292 |
(C2×C4○D4)⋊55C22 = C22.151C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):55C2^2 | 128,2294 |
(C2×C4○D4)⋊56C22 = C2×D4○D8 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):56C2^2 | 128,2313 |
(C2×C4○D4)⋊57C22 = C2×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):57C2^2 | 128,2314 |
(C2×C4○D4)⋊58C22 = C8.C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4):58C2^2 | 128,2316 |
(C2×C4○D4)⋊59C22 = D8⋊C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):59C2^2 | 128,2317 |
(C2×C4○D4)⋊60C22 = C4.C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4):60C2^2 | 128,2318 |
(C2×C4○D4)⋊61C22 = 2+ 1+6 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):61C2^2 | 128,2326 |
(C2×C4○D4)⋊62C22 = 2- 1+6 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4):62C2^2 | 128,2327 |
(C2×C4○D4)⋊63C22 = C2×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):63C2^2 | 128,1732 |
(C2×C4○D4)⋊64C22 = C24.105D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):64C2^2 | 128,1738 |
(C2×C4○D4)⋊65C22 = C2×C22.19C24 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):65C2^2 | 128,2167 |
(C2×C4○D4)⋊66C22 = C2×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):66C2^2 | 128,2174 |
(C2×C4○D4)⋊67C22 = C2×C22.29C24 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):67C2^2 | 128,2178 |
(C2×C4○D4)⋊68C22 = C2×C22.31C24 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):68C2^2 | 128,2180 |
(C2×C4○D4)⋊69C22 = C22.38C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):69C2^2 | 128,2181 |
(C2×C4○D4)⋊70C22 = C2×D4⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):70C2^2 | 128,2195 |
(C2×C4○D4)⋊71C22 = C2×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):71C2^2 | 128,2196 |
(C2×C4○D4)⋊72C22 = C2×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):72C2^2 | 128,2197 |
(C2×C4○D4)⋊73C22 = C2×Q8⋊6D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):73C2^2 | 128,2199 |
(C2×C4○D4)⋊74C22 = D4×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):74C2^2 | 128,2200 |
(C2×C4○D4)⋊75C22 = C22.74C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):75C2^2 | 128,2217 |
(C2×C4○D4)⋊76C22 = C22×C4○D8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):76C2^2 | 128,2309 |
(C2×C4○D4)⋊77C22 = C22×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):77C2^2 | 128,2310 |
(C2×C4○D4)⋊78C22 = C2×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):78C2^2 | 128,2312 |
(C2×C4○D4)⋊79C22 = C22×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):79C2^2 | 128,2323 |
(C2×C4○D4)⋊80C22 = C22×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):80C2^2 | 128,2324 |
(C2×C4○D4)⋊81C22 = C2×C2.C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):81C2^2 | 128,2325 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4).1C22 = C23.2C42 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).1C2^2 | 128,123 |
(C2×C4○D4).2C22 = C23.3C42 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).2C2^2 | 128,124 |
(C2×C4○D4).3C22 = (C22×C8)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).3C2^2 | 128,127 |
(C2×C4○D4).4C22 = 2+ 1+4.2C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).4C2^2 | 128,523 |
(C2×C4○D4).5C22 = 2+ 1+4⋊3C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).5C2^2 | 128,524 |
(C2×C4○D4).6C22 = 2- 1+4⋊2C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).6C2^2 | 128,525 |
(C2×C4○D4).7C22 = 2+ 1+4⋊4C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).7C2^2 | 128,526 |
(C2×C4○D4).8C22 = C4○D4.D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).8C2^2 | 128,527 |
(C2×C4○D4).9C22 = (C22×Q8)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).9C2^2 | 128,528 |
(C2×C4○D4).10C22 = M4(2).40D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).10C2^2 | 128,590 |
(C2×C4○D4).11C22 = C4≀C2⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).11C2^2 | 128,591 |
(C2×C4○D4).12C22 = C42⋊9(C2×C4) | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).12C2^2 | 128,592 |
(C2×C4○D4).13C22 = M4(2).41D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).13C2^2 | 128,593 |
(C2×C4○D4).14C22 = (C2×D4).Q8 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).14C2^2 | 128,600 |
(C2×C4○D4).15C22 = C24.72D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).15C2^2 | 128,603 |
(C2×C4○D4).16C22 = M4(2).44D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).16C2^2 | 128,613 |
(C2×C4○D4).17C22 = C8.C22⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).17C2^2 | 128,614 |
(C2×C4○D4).18C22 = C8⋊C22⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).18C2^2 | 128,615 |
(C2×C4○D4).19C22 = M4(2)⋊19D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).19C2^2 | 128,616 |
(C2×C4○D4).20C22 = (C2×C8)⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).20C2^2 | 128,623 |
(C2×C4○D4).21C22 = (C2×C4)≀C2 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4).21C2^2 | 128,628 |
(C2×C4○D4).22C22 = C42⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).22C2^2 | 128,629 |
(C2×C4○D4).23C22 = M4(2).46D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).23C2^2 | 128,634 |
(C2×C4○D4).24C22 = M4(2).47D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).24C2^2 | 128,635 |
(C2×C4○D4).25C22 = C42.5D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).25C2^2 | 128,636 |
(C2×C4○D4).26C22 = C42.6D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).26C2^2 | 128,637 |
(C2×C4○D4).27C22 = C4.(C4×D4) | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).27C2^2 | 128,641 |
(C2×C4○D4).28C22 = (C2×C8)⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).28C2^2 | 128,642 |
(C2×C4○D4).29C22 = C42⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).29C2^2 | 128,643 |
(C2×C4○D4).30C22 = C42.7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).30C2^2 | 128,644 |
(C2×C4○D4).31C22 = M4(2)⋊21D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).31C2^2 | 128,646 |
(C2×C4○D4).32C22 = M4(2).50D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).32C2^2 | 128,647 |
(C2×C4○D4).33C22 = M4(2).24D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).33C2^2 | 128,661 |
(C2×C4○D4).34C22 = C42.427D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).34C2^2 | 128,664 |
(C2×C4○D4).35C22 = C42.428D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).35C2^2 | 128,669 |
(C2×C4○D4).36C22 = C42.107D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).36C2^2 | 128,670 |
(C2×C4○D4).37C22 = C43⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).37C2^2 | 128,694 |
(C2×C4○D4).38C22 = C42⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).38C2^2 | 128,695 |
(C2×C4○D4).39C22 = C42.326D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).39C2^2 | 128,706 |
(C2×C4○D4).40C22 = C42.116D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).40C2^2 | 128,707 |
(C2×C4○D4).41C22 = M4(2).30D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).41C2^2 | 128,708 |
(C2×C4○D4).42C22 = M4(2)⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).42C2^2 | 128,712 |
(C2×C4○D4).43C22 = C42⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4).43C2^2 | 128,734 |
(C2×C4○D4).44C22 = C42.129D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).44C2^2 | 128,735 |
(C2×C4○D4).45C22 = C42⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).45C2^2 | 128,736 |
(C2×C4○D4).46C22 = C42.130D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).46C2^2 | 128,737 |
(C2×C4○D4).47C22 = M4(2)⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).47C2^2 | 128,738 |
(C2×C4○D4).48C22 = M4(2)⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).48C2^2 | 128,739 |
(C2×C4○D4).49C22 = M4(2)⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).49C2^2 | 128,740 |
(C2×C4○D4).50C22 = M4(2).D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).50C2^2 | 128,741 |
(C2×C4○D4).51C22 = C42⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).51C2^2 | 128,742 |
(C2×C4○D4).52C22 = (C2×C8).2D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).52C2^2 | 128,749 |
(C2×C4○D4).53C22 = M4(2).4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).53C2^2 | 128,750 |
(C2×C4○D4).54C22 = M4(2).5D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).54C2^2 | 128,751 |
(C2×C4○D4).55C22 = M4(2).6D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).55C2^2 | 128,752 |
(C2×C4○D4).56C22 = C42.8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).56C2^2 | 128,763 |
(C2×C4○D4).57C22 = M4(2)⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).57C2^2 | 128,769 |
(C2×C4○D4).58C22 = M4(2).7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).58C2^2 | 128,770 |
(C2×C4○D4).59C22 = C42⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).59C2^2 | 128,771 |
(C2×C4○D4).60C22 = C42⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).60C2^2 | 128,772 |
(C2×C4○D4).61C22 = M4(2).8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).61C2^2 | 128,780 |
(C2×C4○D4).62C22 = M4(2).9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).62C2^2 | 128,781 |
(C2×C4○D4).63C22 = C42.131D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).63C2^2 | 128,782 |
(C2×C4○D4).64C22 = M4(2).10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).64C2^2 | 128,783 |
(C2×C4○D4).65C22 = M4(2).11D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).65C2^2 | 128,784 |
(C2×C4○D4).66C22 = C22⋊C4.7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).66C2^2 | 128,785 |
(C2×C4○D4).67C22 = (C2×C8).55D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).67C2^2 | 128,810 |
(C2×C4○D4).68C22 = (C2×C8).165D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).68C2^2 | 128,811 |
(C2×C4○D4).69C22 = C42.9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).69C2^2 | 128,812 |
(C2×C4○D4).70C22 = C42.10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).70C2^2 | 128,830 |
(C2×C4○D4).71C22 = C4○C2≀C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).71C2^2 | 128,852 |
(C2×C4○D4).72C22 = C2≀C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).72C2^2 | 128,854 |
(C2×C4○D4).73C22 = C23.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).73C2^2 | 128,855 |
(C2×C4○D4).74C22 = C4⋊Q8⋊29C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).74C2^2 | 128,858 |
(C2×C4○D4).75C22 = C4.4D4⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).75C2^2 | 128,860 |
(C2×C4○D4).76C22 = C4⋊Q8⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).76C2^2 | 128,861 |
(C2×C4○D4).77C22 = (C2×D4).135D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).77C2^2 | 128,864 |
(C2×C4○D4).78C22 = C4⋊1D4.C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).78C2^2 | 128,866 |
(C2×C4○D4).79C22 = (C2×D4).137D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).79C2^2 | 128,867 |
(C2×C4○D4).80C22 = C23.C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).80C2^2 | 128,1615 |
(C2×C4○D4).81C22 = C23.4C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).81C2^2 | 128,1616 |
(C2×C4○D4).82C22 = M4(2).24C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).82C2^2 | 128,1620 |
(C2×C4○D4).83C22 = M4(2).25C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).83C2^2 | 128,1621 |
(C2×C4○D4).84C22 = 2+ 1+4⋊5C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).84C2^2 | 128,1629 |
(C2×C4○D4).85C22 = 2- 1+4⋊4C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).85C2^2 | 128,1630 |
(C2×C4○D4).86C22 = 2- 1+4⋊5C4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).86C2^2 | 128,1633 |
(C2×C4○D4).87C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).87C2^2 | 128,1678 |
(C2×C4○D4).88C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).88C2^2 | 128,1679 |
(C2×C4○D4).89C22 = C42.280C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).89C2^2 | 128,1683 |
(C2×C4○D4).90C22 = C42.281C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).90C2^2 | 128,1684 |
(C2×C4○D4).91C22 = M4(2).51D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).91C2^2 | 128,1688 |
(C2×C4○D4).92C22 = M4(2)○D8 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).92C2^2 | 128,1689 |
(C2×C4○D4).93C22 = C42.297C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).93C2^2 | 128,1708 |
(C2×C4○D4).94C22 = C42.298C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).94C2^2 | 128,1709 |
(C2×C4○D4).95C22 = C42.299C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).95C2^2 | 128,1710 |
(C2×C4○D4).96C22 = C42.694C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).96C2^2 | 128,1711 |
(C2×C4○D4).97C22 = C42.300C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).97C2^2 | 128,1712 |
(C2×C4○D4).98C22 = C42.301C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).98C2^2 | 128,1713 |
(C2×C4○D4).99C22 = C24.178D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).99C2^2 | 128,1736 |
(C2×C4○D4).100C22 = C24.104D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).100C2^2 | 128,1737 |
(C2×C4○D4).101C22 = D4.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).101C2^2 | 128,1741 |
(C2×C4○D4).102C22 = Q8.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).102C2^2 | 128,1743 |
(C2×C4○D4).103C22 = (C2×Q8)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).103C2^2 | 128,1745 |
(C2×C4○D4).104C22 = C2×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4).104C2^2 | 128,1746 |
(C2×C4○D4).105C22 = C2×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).105C2^2 | 128,1747 |
(C2×C4○D4).106C22 = C2×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).106C2^2 | 128,1748 |
(C2×C4○D4).107C22 = C2×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).107C2^2 | 128,1749 |
(C2×C4○D4).108C22 = M4(2).C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).108C2^2 | 128,1752 |
(C2×C4○D4).109C22 = C42.12C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).109C2^2 | 128,1753 |
(C2×C4○D4).110C22 = C42.13C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).110C2^2 | 128,1754 |
(C2×C4○D4).111C22 = C23.7C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).111C2^2 | 128,1757 |
(C2×C4○D4).112C22 = C23.9C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).112C2^2 | 128,1759 |
(C2×C4○D4).113C22 = C23.10C24 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).113C2^2 | 128,1760 |
(C2×C4○D4).114C22 = C42.443D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).114C2^2 | 128,1767 |
(C2×C4○D4).115C22 = C42.211D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).115C2^2 | 128,1768 |
(C2×C4○D4).116C22 = C42.212D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).116C2^2 | 128,1769 |
(C2×C4○D4).117C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).117C2^2 | 128,1773 |
(C2×C4○D4).118C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).118C2^2 | 128,1774 |
(C2×C4○D4).119C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).119C2^2 | 128,1775 |
(C2×C4○D4).120C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).120C2^2 | 128,1776 |
(C2×C4○D4).121C22 = C42.18C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).121C2^2 | 128,1777 |
(C2×C4○D4).122C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).122C2^2 | 128,1778 |
(C2×C4○D4).123C22 = C24.144D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).123C2^2 | 128,1782 |
(C2×C4○D4).124C22 = C24.110D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).124C2^2 | 128,1786 |
(C2×C4○D4).125C22 = M4(2)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).125C2^2 | 128,1787 |
(C2×C4○D4).126C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).126C2^2 | 128,1788 |
(C2×C4○D4).127C22 = (C2×C8)⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).127C2^2 | 128,1792 |
(C2×C4○D4).128C22 = (C2×C8)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).128C2^2 | 128,1793 |
(C2×C4○D4).129C22 = M4(2)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).129C2^2 | 128,1794 |
(C2×C4○D4).130C22 = M4(2)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).130C2^2 | 128,1795 |
(C2×C4○D4).131C22 = M4(2).10C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).131C2^2 | 128,1799 |
(C2×C4○D4).132C22 = M4(2).37D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).132C2^2 | 128,1800 |
(C2×C4○D4).133C22 = M4(2).38D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).133C2^2 | 128,1801 |
(C2×C4○D4).134C22 = C42.22C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).134C2^2 | 128,1815 |
(C2×C4○D4).135C22 = C42.23C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).135C2^2 | 128,1816 |
(C2×C4○D4).136C22 = C24.115D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).136C2^2 | 128,1823 |
(C2×C4○D4).137C22 = C24.183D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).137C2^2 | 128,1824 |
(C2×C4○D4).138C22 = C24.116D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).138C2^2 | 128,1825 |
(C2×C4○D4).139C22 = (C2×D4).301D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).139C2^2 | 128,1828 |
(C2×C4○D4).140C22 = (C2×D4).302D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).140C2^2 | 128,1829 |
(C2×C4○D4).141C22 = (C2×D4).303D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).141C2^2 | 128,1830 |
(C2×C4○D4).142C22 = (C2×D4).304D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).142C2^2 | 128,1831 |
(C2×C4○D4).143C22 = C42.353C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).143C2^2 | 128,1851 |
(C2×C4○D4).144C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).144C2^2 | 128,1852 |
(C2×C4○D4).145C22 = C42.358C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).145C2^2 | 128,1856 |
(C2×C4○D4).146C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).146C2^2 | 128,1857 |
(C2×C4○D4).147C22 = C42.355D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).147C2^2 | 128,1863 |
(C2×C4○D4).148C22 = C42.239D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).148C2^2 | 128,1867 |
(C2×C4○D4).149C22 = C42.366C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).149C2^2 | 128,1868 |
(C2×C4○D4).150C22 = C42.367C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).150C2^2 | 128,1869 |
(C2×C4○D4).151C22 = C42.243D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).151C2^2 | 128,1873 |
(C2×C4○D4).152C22 = C42.244D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).152C2^2 | 128,1874 |
(C2×C4○D4).153C22 = C42.360D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).153C2^2 | 128,1879 |
(C2×C4○D4).154C22 = C42.247D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).154C2^2 | 128,1882 |
(C2×C4○D4).155C22 = M4(2)⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).155C2^2 | 128,1883 |
(C2×C4○D4).156C22 = M4(2)⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).156C2^2 | 128,1884 |
(C2×C4○D4).157C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).157C2^2 | 128,1885 |
(C2×C4○D4).158C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).158C2^2 | 128,1886 |
(C2×C4○D4).159C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).159C2^2 | 128,1887 |
(C2×C4○D4).160C22 = M4(2).20D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).160C2^2 | 128,1888 |
(C2×C4○D4).161C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).161C2^2 | 128,1922 |
(C2×C4○D4).162C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).162C2^2 | 128,1923 |
(C2×C4○D4).163C22 = C24.129D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).163C2^2 | 128,1928 |
(C2×C4○D4).164C22 = C24.130D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).164C2^2 | 128,1929 |
(C2×C4○D4).165C22 = C4.142+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).165C2^2 | 128,1931 |
(C2×C4○D4).166C22 = C4.152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).166C2^2 | 128,1932 |
(C2×C4○D4).167C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).167C2^2 | 128,1933 |
(C2×C4○D4).168C22 = C4.172+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).168C2^2 | 128,1934 |
(C2×C4○D4).169C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).169C2^2 | 128,1935 |
(C2×C4○D4).170C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).170C2^2 | 128,1936 |
(C2×C4○D4).171C22 = C42.265D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).171C2^2 | 128,1939 |
(C2×C4○D4).172C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).172C2^2 | 128,1942 |
(C2×C4○D4).173C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).173C2^2 | 128,1944 |
(C2×C4○D4).174C22 = C42.272D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).174C2^2 | 128,1946 |
(C2×C4○D4).175C22 = C42.274D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).175C2^2 | 128,1948 |
(C2×C4○D4).176C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).176C2^2 | 128,1951 |
(C2×C4○D4).177C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).177C2^2 | 128,1952 |
(C2×C4○D4).178C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).178C2^2 | 128,1953 |
(C2×C4○D4).179C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).179C2^2 | 128,1954 |
(C2×C4○D4).180C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).180C2^2 | 128,1955 |
(C2×C4○D4).181C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).181C2^2 | 128,1956 |
(C2×C4○D4).182C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).182C2^2 | 128,1957 |
(C2×C4○D4).183C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).183C2^2 | 128,1998 |
(C2×C4○D4).184C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).184C2^2 | 128,2001 |
(C2×C4○D4).185C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).185C2^2 | 128,2002 |
(C2×C4○D4).186C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).186C2^2 | 128,2003 |
(C2×C4○D4).187C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).187C2^2 | 128,2005 |
(C2×C4○D4).188C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).188C2^2 | 128,2007 |
(C2×C4○D4).189C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).189C2^2 | 128,2008 |
(C2×C4○D4).190C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).190C2^2 | 128,2009 |
(C2×C4○D4).191C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).191C2^2 | 128,2010 |
(C2×C4○D4).192C22 = D8⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).192C2^2 | 128,2015 |
(C2×C4○D4).193C22 = SD16⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).193C2^2 | 128,2016 |
(C2×C4○D4).194C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).194C2^2 | 128,2017 |
(C2×C4○D4).195C22 = Q16⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).195C2^2 | 128,2019 |
(C2×C4○D4).196C22 = C42.461C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).196C2^2 | 128,2028 |
(C2×C4○D4).197C22 = C42.462C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).197C2^2 | 128,2029 |
(C2×C4○D4).198C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).198C2^2 | 128,2032 |
(C2×C4○D4).199C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).199C2^2 | 128,2033 |
(C2×C4○D4).200C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).200C2^2 | 128,2034 |
(C2×C4○D4).201C22 = C42.468C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).201C2^2 | 128,2035 |
(C2×C4○D4).202C22 = C42.469C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).202C2^2 | 128,2036 |
(C2×C4○D4).203C22 = C42.470C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).203C2^2 | 128,2037 |
(C2×C4○D4).204C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).204C2^2 | 128,2038 |
(C2×C4○D4).205C22 = C42.42C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).205C2^2 | 128,2039 |
(C2×C4○D4).206C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).206C2^2 | 128,2040 |
(C2×C4○D4).207C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).207C2^2 | 128,2041 |
(C2×C4○D4).208C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).208C2^2 | 128,2043 |
(C2×C4○D4).209C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).209C2^2 | 128,2045 |
(C2×C4○D4).210C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).210C2^2 | 128,2046 |
(C2×C4○D4).211C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).211C2^2 | 128,2047 |
(C2×C4○D4).212C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).212C2^2 | 128,2048 |
(C2×C4○D4).213C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).213C2^2 | 128,2049 |
(C2×C4○D4).214C22 = C42.54C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).214C2^2 | 128,2051 |
(C2×C4○D4).215C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).215C2^2 | 128,2053 |
(C2×C4○D4).216C22 = C42.471C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).216C2^2 | 128,2054 |
(C2×C4○D4).217C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).217C2^2 | 128,2055 |
(C2×C4○D4).218C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).218C2^2 | 128,2058 |
(C2×C4○D4).219C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).219C2^2 | 128,2059 |
(C2×C4○D4).220C22 = C42.479C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).220C2^2 | 128,2062 |
(C2×C4○D4).221C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).221C2^2 | 128,2063 |
(C2×C4○D4).222C22 = C42.481C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).222C2^2 | 128,2064 |
(C2×C4○D4).223C22 = C42.482C23 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).223C2^2 | 128,2065 |
(C2×C4○D4).224C22 = C22.81C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).224C2^2 | 128,2224 |
(C2×C4○D4).225C22 = C22.82C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).225C2^2 | 128,2225 |
(C2×C4○D4).226C22 = C22.84C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).226C2^2 | 128,2227 |
(C2×C4○D4).227C22 = C4⋊2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).227C2^2 | 128,2229 |
(C2×C4○D4).228C22 = C22.88C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).228C2^2 | 128,2231 |
(C2×C4○D4).229C22 = C22.96C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).229C2^2 | 128,2239 |
(C2×C4○D4).230C22 = C22.100C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).230C2^2 | 128,2243 |
(C2×C4○D4).231C22 = C22.101C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).231C2^2 | 128,2244 |
(C2×C4○D4).232C22 = C22.104C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).232C2^2 | 128,2247 |
(C2×C4○D4).233C22 = C22.105C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).233C2^2 | 128,2248 |
(C2×C4○D4).234C22 = C22.106C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).234C2^2 | 128,2249 |
(C2×C4○D4).235C22 = C22.111C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).235C2^2 | 128,2254 |
(C2×C4○D4).236C22 = C22.113C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).236C2^2 | 128,2256 |
(C2×C4○D4).237C22 = C22.127C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).237C2^2 | 128,2270 |
(C2×C4○D4).238C22 = C22.129C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).238C2^2 | 128,2272 |
(C2×C4○D4).239C22 = C22.133C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).239C2^2 | 128,2276 |
(C2×C4○D4).240C22 = C22.134C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).240C2^2 | 128,2277 |
(C2×C4○D4).241C22 = C22.136C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).241C2^2 | 128,2279 |
(C2×C4○D4).242C22 = C22.137C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).242C2^2 | 128,2280 |
(C2×C4○D4).243C22 = C22.139C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).243C2^2 | 128,2282 |
(C2×C4○D4).244C22 = C22.141C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).244C2^2 | 128,2284 |
(C2×C4○D4).245C22 = C22.143C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).245C2^2 | 128,2286 |
(C2×C4○D4).246C22 = C22.148C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).246C2^2 | 128,2291 |
(C2×C4○D4).247C22 = C22.150C25 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).247C2^2 | 128,2293 |
(C2×C4○D4).248C22 = C2×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).248C2^2 | 128,2315 |
(C2×C4○D4).249C22 = C23.5C42 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).249C2^2 | 128,489 |
(C2×C4○D4).250C22 = C4×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).250C2^2 | 128,490 |
(C2×C4○D4).251C22 = D4.C42 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).251C2^2 | 128,491 |
(C2×C4○D4).252C22 = Q8.C42 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).252C2^2 | 128,496 |
(C2×C4○D4).253C22 = D4.3C42 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).253C2^2 | 128,497 |
(C2×C4○D4).254C22 = C24.66D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).254C2^2 | 128,521 |
(C2×C4○D4).255C22 = C42.102D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).255C2^2 | 128,538 |
(C2×C4○D4).256C22 = (C2×D4).24Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).256C2^2 | 128,544 |
(C2×C4○D4).257C22 = (C2×C8).103D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).257C2^2 | 128,545 |
(C2×C4○D4).258C22 = C8○D4⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).258C2^2 | 128,546 |
(C2×C4○D4).259C22 = C4○D4.4Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).259C2^2 | 128,547 |
(C2×C4○D4).260C22 = C4○D4.5Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).260C2^2 | 128,548 |
(C2×C4○D4).261C22 = (C2×C42)⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).261C2^2 | 128,559 |
(C2×C4○D4).262C22 = M4(2).42D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).262C2^2 | 128,598 |
(C2×C4○D4).263C22 = M4(2).43D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).263C2^2 | 128,608 |
(C2×C4○D4).264C22 = C42.426D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).264C2^2 | 128,638 |
(C2×C4○D4).265C22 = M4(2).48D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).265C2^2 | 128,639 |
(C2×C4○D4).266C22 = M4(2).49D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).266C2^2 | 128,640 |
(C2×C4○D4).267C22 = C2×(C22×C8)⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).267C2^2 | 128,1610 |
(C2×C4○D4).268C22 = C24.73(C2×C4) | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).268C2^2 | 128,1611 |
(C2×C4○D4).269C22 = D4○(C22⋊C8) | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).269C2^2 | 128,1612 |
(C2×C4○D4).270C22 = C2×C23.C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).270C2^2 | 128,1614 |
(C2×C4○D4).271C22 = C2×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).271C2^2 | 128,1619 |
(C2×C4○D4).272C22 = C2×C23.24D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).272C2^2 | 128,1624 |
(C2×C4○D4).273C22 = C2×C23.36D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).273C2^2 | 128,1627 |
(C2×C4○D4).274C22 = C24.98D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).274C2^2 | 128,1628 |
(C2×C4○D4).275C22 = C22×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).275C2^2 | 128,1631 |
(C2×C4○D4).276C22 = C2×C42⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).276C2^2 | 128,1632 |
(C2×C4○D4).277C22 = C4○D4.7Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).277C2^2 | 128,1644 |
(C2×C4○D4).278C22 = C4○D4.8Q8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).278C2^2 | 128,1645 |
(C2×C4○D4).279C22 = M4(2).29C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).279C2^2 | 128,1648 |
(C2×C4○D4).280C22 = C42.260C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).280C2^2 | 128,1654 |
(C2×C4○D4).281C22 = C42.261C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).281C2^2 | 128,1655 |
(C2×C4○D4).282C22 = C42.678C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).282C2^2 | 128,1657 |
(C2×C4○D4).283C22 = C42.264C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).283C2^2 | 128,1661 |
(C2×C4○D4).284C22 = C42.265C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).284C2^2 | 128,1662 |
(C2×C4○D4).285C22 = C42.681C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).285C2^2 | 128,1663 |
(C2×C4○D4).286C22 = C42.266C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).286C2^2 | 128,1664 |
(C2×C4○D4).287C22 = M4(2)⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).287C2^2 | 128,1665 |
(C2×C4○D4).288C22 = M4(2)⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).288C2^2 | 128,1667 |
(C2×C4○D4).289C22 = C4×C4○D8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).289C2^2 | 128,1671 |
(C2×C4○D4).290C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).290C2^2 | 128,1675 |
(C2×C4○D4).291C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).291C2^2 | 128,1676 |
(C2×C4○D4).292C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).292C2^2 | 128,1677 |
(C2×C4○D4).293C22 = C2×C8○D8 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).293C2^2 | 128,1685 |
(C2×C4○D4).294C22 = C2×C8.26D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).294C2^2 | 128,1686 |
(C2×C4○D4).295C22 = C42.283C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).295C2^2 | 128,1687 |
(C2×C4○D4).296C22 = C2×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).296C2^2 | 128,1733 |
(C2×C4○D4).297C22 = C24.106D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).297C2^2 | 128,1739 |
(C2×C4○D4).298C22 = C42.444D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).298C2^2 | 128,1770 |
(C2×C4○D4).299C22 = C42.445D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).299C2^2 | 128,1771 |
(C2×C4○D4).300C22 = C42.446D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).300C2^2 | 128,1772 |
(C2×C4○D4).301C22 = (C2×C8)⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).301C2^2 | 128,1789 |
(C2×C4○D4).302C22 = (C2×C8)⋊12D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).302C2^2 | 128,1790 |
(C2×C4○D4).303C22 = C8.D4⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).303C2^2 | 128,1791 |
(C2×C4○D4).304C22 = C2×D4.3D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).304C2^2 | 128,1796 |
(C2×C4○D4).305C22 = C2×D4.4D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).305C2^2 | 128,1797 |
(C2×C4○D4).306C22 = C2×D4.5D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).306C2^2 | 128,1798 |
(C2×C4○D4).307C22 = C42.447D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).307C2^2 | 128,1808 |
(C2×C4○D4).308C22 = C42.448D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).308C2^2 | 128,1811 |
(C2×C4○D4).309C22 = C42.449D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).309C2^2 | 128,1812 |
(C2×C4○D4).310C22 = C42.384D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).310C2^2 | 128,1834 |
(C2×C4○D4).311C22 = C42.450D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).311C2^2 | 128,1838 |
(C2×C4○D4).312C22 = C42.451D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).312C2^2 | 128,1839 |
(C2×C4○D4).313C22 = C42.229D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).313C2^2 | 128,1843 |
(C2×C4○D4).314C22 = C42.233D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).314C2^2 | 128,1847 |
(C2×C4○D4).315C22 = C42.234D4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).315C2^2 | 128,1848 |
(C2×C4○D4).316C22 = C2×C23.33C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).316C2^2 | 128,2159 |
(C2×C4○D4).317C22 = C22.14C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).317C2^2 | 128,2160 |
(C2×C4○D4).318C22 = C4×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).318C2^2 | 128,2161 |
(C2×C4○D4).319C22 = C4×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).319C2^2 | 128,2162 |
(C2×C4○D4).320C22 = C22.33C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).320C2^2 | 128,2176 |
(C2×C4○D4).321C22 = C2×C23.38C23 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).321C2^2 | 128,2179 |
(C2×C4○D4).322C22 = C22.44C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).322C2^2 | 128,2187 |
(C2×C4○D4).323C22 = C22.50C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).323C2^2 | 128,2193 |
(C2×C4○D4).324C22 = C22.64C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).324C2^2 | 128,2207 |
(C2×C4○D4).325C22 = C22.69C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).325C2^2 | 128,2212 |
(C2×C4○D4).326C22 = C22.71C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).326C2^2 | 128,2214 |
(C2×C4○D4).327C22 = C22.72C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).327C2^2 | 128,2215 |
(C2×C4○D4).328C22 = C22.92C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).328C2^2 | 128,2235 |
(C2×C4○D4).329C22 = C22.93C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).329C2^2 | 128,2236 |
(C2×C4○D4).330C22 = C22.98C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).330C2^2 | 128,2241 |
(C2×C4○D4).331C22 = C22.99C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).331C2^2 | 128,2242 |
(C2×C4○D4).332C22 = C22.107C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).332C2^2 | 128,2250 |
(C2×C4○D4).333C22 = C22.110C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).333C2^2 | 128,2253 |
(C2×C4○D4).334C22 = C2×Q8○M4(2) | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).334C2^2 | 128,2304 |
(C2×C4○D4).335C22 = C4.22C25 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).335C2^2 | 128,2305 |
(C2×C4○D4).336C22 = C22×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).336C2^2 | 128,2311 |
(C2×C4○D4).337C22 = C4×C8○D4 | φ: trivial image | 64 | | (C2xC4oD4).337C2^2 | 128,1606 |
(C2×C4○D4).338C22 = D4.5C42 | φ: trivial image | 64 | | (C2xC4oD4).338C2^2 | 128,1607 |
(C2×C4○D4).339C22 = C42.674C23 | φ: trivial image | 64 | | (C2xC4oD4).339C2^2 | 128,1638 |
(C2×C4○D4).340C22 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2xC4oD4).340C2^2 | 128,2156 |
(C2×C4○D4).341C22 = Q8×C4○D4 | φ: trivial image | 64 | | (C2xC4oD4).341C2^2 | 128,2210 |
(C2×C4○D4).342C22 = C22×C8○D4 | φ: trivial image | 64 | | (C2xC4oD4).342C2^2 | 128,2303 |